4.5 Review

Caloric Effects in Perovskite Oxides

Journal

ADVANCED MATERIALS INTERFACES
Volume 6, Issue 15, Pages -

Publisher

WILEY
DOI: 10.1002/admi.201900291

Keywords

caloric effects; interfaces; perovskite oxide; solid-state refrigeration; thin films

Ask authors/readers for more resources

Perovskite oxides show an amazing diversity of electronic and magnetic properties along with a myriad of structural variants and phase transitions. Large thermal changes may be driven near the ferroic phase transitions in perovskite oxides using magnetic, electric, and stress fields to manipulate conjugate order parameters. The ensuing magnetocaloric, electrocaloric, and mechanocaloric effects can be utilized for environment-friendly and high-efficiency solid-state cooling applications. In this review the details of these caloric effects in perovskite oxides both from a chronological perspective and from the viewpoint of the recent advances in multiple caloric phenomena are described. The authors highlight the role of interfaces in oxide thin films for the different caloric effects and address some of the outstanding challenges for the fundamental understanding and practical implementation of perovskite oxides in solid state refrigeration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available