4.5 Article

The effect of chrysin-curcumin-loaded nanofibres on the wound-healing process in male rats

Journal

ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY
Volume 47, Issue 1, Pages 1642-1652

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/21691401.2019.1594855

Keywords

Wound healing; chrysin; curcumin; MMPs; TIMPs

Funding

  1. School of Advanced Medical Sciences, Tabriz University of Medical Sciences

Ask authors/readers for more resources

Aim: The aim of the present study was to produce chrysin-curcumin-loaded PCL-PEG nanofibres by an electrospinning technique and to evaluate the biological activity of the chrysin-curcumin-loaded PCL-PEG fibres for wound healing and its related genes using in vivo methods. Materials and methods: The electrospinning method was carried out for the preparation of the chrysin, curcumin and chrysin-curcumin-loaded PCL-PEG nanofibres with different concentrations. FTIR and SEM were performed to characterize the chemical structures and morphology of the nanofibres. In vitro drug release, as well as in vivo wound-healing studies were investigated in male rats. The expressions of genes related to the wound-healing process were also evaluated by real-time PCR. Results: Our study showed that the chrysin-curcumin-loaded nanofibres have anti-inflammatory properties in several stages of the wound-healing process by affecting the IL-6, MMP-2, TIMP-1, TIMP-2 and iNOS gene expression. Our results demonstrated that the effect of the chrysin-loaded nanofibre, the curcumin-loaded nanofibre and the chrysin-curcumin-loaded nanofibre in the wound-healing process is dose dependent and in accordance with the obtained results in that it might affect the inflammation phase more than the other stages of the wound-healing process. Conclusion: We have introduced chrysin-curcumin-loaded PCL-PEG nanofibres as a novel compound for shortening the duration of the wound-healing process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available