4.7 Article

Glycerolipid remodeling triggered by phosphorous starvation and recovery in Nannochloropsis oceanica

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.algal.2019.101451

Keywords

Glycerolipid remodeling; Lipidomic analysis; Phosphorous limitation and recovery; Nannochloropsis oceanica; DGTS

Funding

  1. China Postdoctoral Science Foundation [2018M632709]
  2. National High-tech R&D Program (863 Program) [2012AA052101]

Ask authors/readers for more resources

To understand the function of DGTS (diacylglyceryl-N,N,N-trimethyl-homoserine) as substitution of PC (phosphatidylcholine), Nannochloropsis oceanica has been chosen as the model system because it has DGTS and PC simultaneously. Phosphorus is a regulator for DGTS and PC. Generally, DGTS increases and correspondingly PC decreases under phosphorous starvation. However, the function of DGTS and its fatty acid origin under phosphorous starvation, and the resurgence of PC triggered by phosphorus recovery remain not clarified completely. In the present study, we investigated the effect of phosphorus starvation and recovery on polar glycerolipid remodeling in N. oceanica based on quantitative lipidomic data. Through targeted lipidomics analysis, we proposed that, under phosphorus deprivation, DGTS serves as the central intermediate in glycerolipid remodeling via acting as the carrier of the C18 fatty acids desaturation by replacement of PC, maintaining the biosynthesis of EPA (eicosapentaenoic acid) and providing the EPA acyl as a precursor for formation of chloroplast glycolipids. The prokaryotic molecular species of DGTS are mainly from de novo biosynthesis pathway and make the major contribution for the DGTS increase. In the process of resupplying phosphorus, PC increased attributing to hydrolysis of TAG, generating diacylglycerol for PC biosynthesis. These new information demonstrated that DGTS and PC varied conversely in different metabolic pathways as revealed by targeted lipidomic data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available