4.6 Article

The Structural Colors of Photonic Glasses

Journal

ADVANCED OPTICAL MATERIALS
Volume 7, Issue 15, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.201900442

Keywords

color modeling; disordered photonics; gamut; isotropic structural colors; monodisperse colloidal glasses

Funding

  1. Deutsche Forschungsgemeinschaft [SFB1214]
  2. Swiss National Science Foundation [200020M_162846]
  3. Alexander von Humboldt Foundation
  4. Swiss National Science Foundation (SNF) [200020M_162846] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

The color of materials usually originates from a combination of wavelength-dependent absorption and scattering. Controlling the color without the use of absorbing dyes is of practical interest, not only because of undesired bleaching properties of dyes but also regarding minimization of environmental and health issues. Color control without dyes can be achieved by tuning the material's scattering properties in controlling size and spatial arrangement of scatterers. Herein, calibrated photonic glasses (PGs), which are isotropic materials made by random aggregation of nonabsorbing, monodisperse colloidal polystyrene spheres, are used to generate a wide spectral range of purely structural, angular-independent colors. Experimental reflectance spectra for different sized spheres compare well with a recent theoretical model, which establishes the latter as a tool for color mapping in PGs. It allows to determine the range of visible colors accessible in PGs as function of size, packing fraction, and refractive index of scatterers. It also predicts color saturation on top of the white reflectance as function of the sample's optical thickness. Blue, green, and red are obtained even with low index, while saturated green, cyan, yellow, and magenta can be reached in higher index PGs over several orders of magnitude of sample thickness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available