4.7 Article

Dual Learning-Based Siamese Framework for Change Detection Using Bi-Temporal VHR Optical Remote Sensing Images

Journal

REMOTE SENSING
Volume 11, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/rs11111292

Keywords

VHR optical remote sensing images; change detection; deep learning technology; dual learning framework; Siamese network

Ask authors/readers for more resources

As a fundamental and profound task in remote sensing, change detection from very-high-resolution (VHR) images plays a vital role in a wide range of applications and attracts considerable attention. Current methods generally focus on the research of simultaneously modeling and discriminating the changed and unchanged features. In practice, for bi-temporal VHR optical remote sensing images, the temporal spectral variability tends to exist in all bands throughout the entire paired images, making it difficult to distinguish none-changes and changes with a single model. In this paper, motivated by this observation, we propose a novel hybrid end-to-end framework named dual learning-based Siamese framework (DLSF) for change detection. The framework comprises two parallel streams which are dual learning-based domain transfer and Siamese-based change decision. The former stream is aimed at reducing the domain differences of two paired images and retaining the intrinsic information by translating them into each other's domain. While the latter stream is aimed at learning a decision strategy to decide the changes in two domains, respectively. By training our proposed framework with certain change map references, this method learns a cross-domain translation in order to suppress the differences of unchanged regions and highlight the differences of changed regions in two domains, respectively, then focus on the detection of changed regions. To the best of our knowledge, the idea of incorporating dual learning framework and Siamese network for change detection is novel. The experimental results on two datasets and the comparison with other state-of-the-art methods verify the efficiency and superiority of our proposed DLSF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available