4.7 Article

Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data

Journal

REMOTE SENSING
Volume 11, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/rs11080929

Keywords

Sentinel-2; forest cover; forest type; tree species; random forest; digital elevation model (DEM)

Funding

  1. European Space Agency (ESA)

Ask authors/readers for more resources

There are a limited number of studies addressing the forest status, its extent, location, type and composition over a larger area at the regional or national levels. The dense time series and a wide swath of Sentinel-2 data are a good basis for forest mapping and tree species identification over a large area. This study presents the results of the classification of the forest/non-forest cover, forest type (broadleaf and coniferous) and the identification of eight tree species (beech, oak, alder, birch, spruce, pine, fir, and larch) using the multi-temporal Sentinel-2 data in combination with topographic information. The study was conducted over the large mountain area located in southern Poland. The Random Forest classifier was used to first derive a forest/non-forest map. Second, the forest was classified into broadleaf and coniferous. Finally, the tree species classification was carried out following two approaches: (i) Non-stratified, where all species were classified together within the forest mask and (ii) stratified, where the broadleaf and coniferous tree species were classified separately within the forest type masks. The overall accuracy for the forest/non-forest cover reached 98.3% and declined slightly to 94.8% for the classification of the forest type. The use of the topographic information did not increase the accuracy of either result. The role of the topographic variables increased significantly in the process of tree species delineation. By combining the topographic information (in particular, digital elevation model) with the multi-temporal Sentinel-2 data, the classification of eight tree species improved from 75.6% to 81.7% (approach 1). A further increase in accuracy to 89.5% for broadleaf and 82% for coniferous species was observed following the stratified approach number 2. The highest overall accuracy (above 85%) was obtained for beech, oak, birch, alder, and larch. The study confirmed the potential of the multi-temporal Sentinel-2 data for accurate delineation of the forest cover, forest type, and tree species at the regional scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available