4.7 Article

The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite Imagery

Journal

REMOTE SENSING
Volume 11, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/rs11101233

Keywords

satellite imagery; classification; texture analysis; GLCM; mathematical morphology; granulometric analysis; Laplace filter

Ask authors/readers for more resources

The paper presents a comparison of the efficacy of several texture analysis methods as tools for improving land use/cover classification in satellite imagery. The tested methods were: gray level co-occurrence matrix (GLCM) features, Laplace filters and granulometric analysis, based on mathematical morphology. The performed tests included an assessment of the classification accuracy performed based on spectro-textural datasets: spectral images with the addition of images generated using different texture analysis methods. The class nomenclature was based on spectral and textural differences and included the following classes: water, low vegetation, bare soil, urban, and two (coniferous and deciduous) forest classes. The classification accuracy was assessed using the overall accuracy and kappa index of agreement, based on the reference data generated using visual interpretation of the images. The analysis was performed using very high-resolution imagery (Pleiades, WorldView-2) and high-resolution imagery (Sentinel-2). The results show the efficacy of selected GLCM features and granulometric analysis as tools for providing textural data, which could be used in the process of land use/cover classification. It is also clear that texture analysis is generally a more important and effective component of classification for images of higher resolution. In addition, for classification using GLCM results, the Random Forest variable importance analysis was performed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available