4.7 Article

On the Gas Storage Properties of 3D Porous Carbons Derived from Hyper-Crosslinked Polymers

Journal

POLYMERS
Volume 11, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/polym11040588

Keywords

activated carbon; hyper-crosslinked polymers; gas storage; raman spectroscopy

Funding

  1. SOL Group
  2. Italian Ministry of Education, University and Research (Project of National Interest) [2010A2FSS9]

Ask authors/readers for more resources

The preparation of porous carbons by post-synthesis treatment of hypercrosslinked polymers is described, with a careful physico-chemical characterization, to obtain new materials for gas storage and separation. Different procedures, based on chemical and thermal activations, are considered; they include thermal treatment at 380 degrees C, and chemical activation with KOH followed by thermal treatment at 750 or 800 degrees C; the resulting materials are carefully characterized in their structural and textural properties. The thermal treatment at temperature below decomposition (380 degrees C) maintains the polymer structure, removing the side-products of the polymerization entrapped in the pores and improving the textural properties. On the other hand, the carbonization leads to a different material, enhancing both surface area and total pore volumethe textural properties of the final porous carbons are affected by the activation procedure and by the starting polymer. Different chemical activation methods and temperatures lead to different carbons with BET surface area ranging between 2318 and 2975 m(2)/g and pore volume up to 1.30 cc/g. The wise choice of the carbonization treatment allows the final textural properties to be finely tuned by increasing either the narrow pore fraction or the micro- and mesoporous volume. High pressure gas adsorption measurements of methane, hydrogen, and carbon dioxide of the most promising material are investigated, and the storage capacity for methane is measured and discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available