4.7 Article

In Situ Synthesis of Fluorescent Mesoporous Silica-Carbon Dot Nanohybrids Featuring Folate Receptor-Overexpressing Cancer Cell Targeting and Drug Delivery

Journal

NANO-MICRO LETTERS
Volume 11, Issue 1, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-019-0263-3

Keywords

Mesoporous silica nanoparticles; Carbon dots; Fluorescence imaging; Targeted drug delivery; Chemotherapy

Funding

  1. National Natural Science Foundation of China [51872300, U1832110]
  2. Ningbo Science and Technology Bureau [2016C50009]
  3. W.C. Wong Education Foundation [rczx0800]

Ask authors/readers for more resources

HighlightsA one-pot method was developed for the preparation of fluorescent mesoporous silica nanoparticles-carbon dots (MSNs-CDs) nanohybrid.The MSNs-CDs nanohybrid showed stable and bright yellow emission, excellent biocompatibility, and specific targeting capability toward folate receptor-overexpressing cancer cells and can be applied as fluorescence imaging-guided drug carriers for effectively delivering anticancer drugs to tumor sites. AbstractMultifunctional nanocarrier-based theranostics is supposed to overcome some key problems in cancer treatment. In this work, a novel method for the preparation of a fluorescent mesoporous silica-carbon dot nanohybrid was developed. Carbon dots (CDs), from folic acid as the raw material, were prepared in situ and anchored on the surface of amino-modified mesoporous silica nanoparticles (MSNs-NH2) via a microwave-assisted solvothermal reaction. The as-prepared nanohybrid (designated MSNs-CDs) not only exhibited strong and stable yellow emission but also preserved the unique features of MSNs (e.g., mesoporous structure, large specific surface area, and good biocompatibility), demonstrating a potential capability for fluorescence imaging-guided drug delivery. More interestingly, the MSNs-CDs nanohybrid was able to selectively target folate receptor-overexpressing cancer cells (e.g., HeLa), indicating that folic acid still retained its function even after undergoing the solvothermal reaction. Benefited by these excellent properties, the fluorescent MSNs-CDs nanohybrid can be employed as a fluorescence-guided nanocarrier for the targeted delivery of anticancer drugs (e.g., doxorubicin), thereby enhancing chemotherapeutic efficacy and reducing side effects. Our studies may provide a facile strategy for the fabrication of multifunctional MSN-based theranostic platforms, which is beneficial in the diagnosis and therapy of cancers in future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available