4.7 Review

Applications of MxSey (M=Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion

Journal

NANO-MICRO LETTERS
Volume 11, Issue 1, Pages -

Publisher

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-019-0272-2

Keywords

MxSey; Battery; Supercapacitor; Electrocatalysis

Funding

  1. National Natural Science Foundation of China [NSFC-21671170, 21673203, 21201010]
  2. Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP)
  3. Program for New Century Excellent Talents of the University in China [NCET-13-0645]
  4. Six Talent Plan [2015-XCL-030]
  5. Qinglan Project

Ask authors/readers for more resources

Transition-metal selenides (MxSey, M=Fe, Co, Ni) and their composites exhibit good storage capacities for sodium and lithium ions and occupy a unique position in research on sodium-ion and lithium-ion batteries. MxSey and their composites are used as active materials to improve catalytic activity. However, low electrical conductivity, poor cycle stability, and low rate performance severely limit their applications. This review provides a comprehensive introduction to and understanding of the current research progress of MxSey and their composites. Moreover, this review proposes a broader research platform for these materials, including various bioelectrocatalytic performance tests, lithium-sulfur batteries, and fuel cells. The synthesis method and related mechanisms of MxSey and their composites are reviewed, and the effects of material morphologies on their electrochemical performance are discussed. The advantages and disadvantages of MxSey and their composites as well as possible strategies for improving the storage and conversion of electrochemical energy are also summarized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available