4.3 Article

New Energy Development and Pollution Emissions in China

Publisher

MDPI
DOI: 10.3390/ijerph16101764

Keywords

EBM (Epsilou-based measure); efficiency; new energy; traditional energy; undesirable output

Funding

  1. National Natural Science Foundation of China [71773082]
  2. Sichuan Science Project [2017ZR0033]

Ask authors/readers for more resources

China's rapid economic growth is accompanied by increasing energy consumption and severe environmental problems. As sustainable development can only be achieved by reducing energy intensity, new energy and renewable energy investment, as well as improving traditional energy efficiency, is becoming increasingly important. However, past energy efficiency assessments using data envelopment analysis (DEA) models mostly focused on radial and non-radial DEA model analyses. However, traditional radial DEA models ignore non-radial slacks when evaluating efficiency values, and non-radial DEA models ignore the same proportionality as radial DEA when evaluating efficiency value slacks. To balance the radial and non-radial model characteristics and consider undesirable output, this study combines a modified Epsilou-based measure (EBM) DEA and undesirable output and proposes a modified undesirable EBM DEA model to analyze the efficiency of China's new and traditional energy sources. The empirical results found that (1) most new energy investment in most municipalities/provinces rapidly grew from 2013 to 2016; (2) as the annual efficiency score was only 1 in Beijing, Inner Mongolia, Shanghai, and Tianjin, the other 26 municipalities/provinces need significant improvements; (3) traditional energy efficiency scores were higher than new energy efficiency; and (4) NO2 efficiencies are slightly better than CO2 and SO2 efficiencies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available