4.6 Article

Ag/AgCl/MIL-101(Fe) Catalyzed Degradation of Methylene Blue under Visible Light Irradation

Journal

MATERIALS
Volume 12, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/ma12091453

Keywords

photo-Fenton; Ag; AgCl; MIL-101(Fe); Box-Behnken design; methylene blue

Funding

  1. National Natural Science Foundation of China [41573118]
  2. Primary Research & Development Plan of Hunan Province [2018SK2016]

Ask authors/readers for more resources

A novel photo-Fenton catalyst named Ag/AgCl/MIL-101(Fe) was synthesized by the method of precipitation and photo reduction and characterized by X-ray diffraction patterns (XRD), Brunauer-Emmett-Teller (BET) measurements, Fourier transform infrared spectra (FTIR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra. Moreover, the catalytic activity of the synthesized catalyst was tested using methylene blue (MB) as the target pollutant. The obtained results illustrated that the plasmonic material Ag/AgCl was successfully loaded on MIL-101(Fe) and the obtained catalyst exhibited an excellent catalytic activity under visible light at the neutral pH. According to the analyses of Plackett-Burman and Box-Behnken design, the optimum conditions for MB degradation were obtained. Under these conditions, the MB decolorization and mineralization efficiencies could reach to 99.75% and 65.43%, respectively. The recycling experiments also showed that the as-prepared catalyst displayed good reusability. In addition, the possible reaction mechanisms for the heterogeneous photo-Fenton system catalyzed by Ag/AgCl/MIL-101(Fe) were derived. The synthesized catalyst provides a promising approach to degrade organic pollutants in waste water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available