4.7 Article

Evaluating Polymyxin B-Based Combinations against Carbapenem-Resistant Escherichia coli in Time-Kill Studies and in a Hollow-Fiber Infection Model

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 61, Issue 1, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.01509-16

Keywords

hollow-fiber infection model; antibiotic combination testing; polymyxin B; carbapenem-resistant Enterobacteriaceae

Funding

  1. Singapore General Hospital Research Grant [SRG/C3/02/2014]
  2. National Medical Research Council Centre Grant [NMRC/CG/016/2013]
  3. Pfizer Inc. [WS 832447, WS 776979]
  4. Janssen-Cilag
  5. Merck Sharp and Dohme (I.A.) Corp.

Ask authors/readers for more resources

Polymyxin B-based combinations have emerged as a mainstay treatment against carbapenem-resistant Escherichia coli (CREC). We investigated the activity of polymyxin B-based two-antibiotic combinations against CREC using time-kill studies (TKS) and validated the findings in a hollow-fiber infection model (HFIM). TKS were conducted using 5 clinical CREC strains at 5 log(10) CFU/ml against 10 polymyxin B-based two-antibiotic combinations at maximum clinically achievable concentrations. HFIMs simulating dosing regimens with polymyxin B (30,000U/kg/day) and tigecycline (100 mg every 12 h) alone and in combination were conducted against two CREC strains at 5 log(10) CFU/ml over 120 h. Emergence of resistance was quantified using antibiotic-containing media. Phenotypic characterization (growth rate and stability of resistant phenotypes) of the resistant isolates was performed. All five CREC strains harbored carbapenemases. Polymyxin B and tigecycline MICs ranged from 0.5 mg/liter to 2 mg/liter and from 0.25 mg/liter to 8 mg/liter, respectively. All antibiotics alone did not have bactericidal activity at 24 h in the TKS, except for polymyxin B against two strains. In combination TKS, only polymyxin B plus tigecycline demonstrated both bactericidal activity and synergy in two out of five strains. In the HFIM, polymyxin B alone was bactericidal against both CREC strains before re-growth was observed at 8 h. Phenotypically stable polymyxin B-resistant mutants were observed for both strains, with a reduced growth rate observed in one strain. Tigecycline alone resulted in a slow reduction in bacterial counts. Polymyxin B plus tigecycline resulted in rapid and sustained bactericidal killing up to 120 h. Polymyxin B plus tigecycline is a promising combination against CREC. The clinical relevance of our results warrants further investigations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available