4.7 Article

A High-Affinity Native Human Antibody Disrupts Biofilm from Staphylococcus aureus Bacteria and Potentiates Antibiotic Efficacy in a Mouse Implant Infection Model

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 60, Issue 4, Pages 2292-2301

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.02588-15

Keywords

-

Funding

  1. Trellis Bioscience LLC
  2. U.S. National Institute of Allergy and Infectious Disease [R41 AI120425]
  3. University Hospital Basel

Ask authors/readers for more resources

Many serious bacterial infections are difficult to treat due to biofilm formation, which provides physical protection and induces a sessile phenotype refractory to antibiotic treatment compared to the planktonic state. A key structural component of biofilm is extracellular DNA, which is held in place by secreted bacterial proteins from the DNABII family: integration host factor (IHF) and histone-like (HU) proteins. A native human monoclonal antibody, TRL1068, has been discovered using single B-lymphocyte screening technology. It has low-picomolar affinity against DNABII homologs from important Gram-positive and Gram-negative bacterial pathogens. The disruption of established biofilm was observed in vitro at an antibody concentration of 1.2 mu g/ml over 12 h. The effect of TRL1068 in vivo was evaluated in a murine tissue cage infection model in which a biofilm is formed by infection with methicillin-resistant Staphylococcus aureus (MRSA; ATCC 43300). Treatment of the established biofilm by combination therapy of TRL1068 (15 mg/kg of body weight, intraperitoneal [i.p.] administration) with daptomycin (50 mg/kg, i.p.) significantly reduced adherent bacterial count compared to that after daptomycin treatment alone, accompanied by significant reduction in planktonic bacterial numbers. The quantification of TRL1068 in sample matrices showed substantial penetration of TRL1068 from serum into the cage interior. TRL1068 is a clinical candidate for combination treatment with standard-of-care antibiotics to overcome the drug-refractory state associated with biofilm formation, with potential utility for a broad spectrum of difficult-to-treat bacterial infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available