4.8 Article

A Robust Route to Co2(OH)2CO3 Ultrathin Nanosheets with Superior Lithium Storage Capability Templated by Aspartic Acid-Functionalized Graphene Oxide

Journal

ADVANCED ENERGY MATERIALS
Volume 9, Issue 26, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201901093

Keywords

amino acid-modified graphene oxide; cobalt carbonate hydroxide (Co-2(OH)(2)CO3); lithium ion batteries; templated growth; ultrathin nanosheet

Funding

  1. National Natural Science Foundation of China [21673131, 61728403, 51872209, 51772219]
  2. Natural Science Foundation of Shandong Province [ZR2016BM03]
  3. Science and Technology Planning Project of Guangdong Province [2016B050501005]
  4. Educational Commission of Guangdong Province [2016KCXTD006]
  5. Zhejiang Provincial Natural Science Foundation of China [LZ18E030001, LZ17E020002]

Ask authors/readers for more resources

Two-dimensional (2D) nanomaterials are widely recognized as an important class of functional materials possessing superior electrochemical reaction kinetics. Herein, an L-aspartic acid (AA)-modified graphene oxide (GO) templating strategy is developed to in situ yield ultrathin (i.e., approximate to 5 nm) cobalt carbonate hydroxide (Co-2(OH)(2)CO3) nanosheets as advanced anode materials of lithium ion batteries. Notably, the covalent tethering of AA on the GO surface renders a high density of carboxyl groups that impart effective loading of Co-containing precursors and subsequent growth into Co-2(OH)(2)CO3 nanosheets bridging adjacent GO layers. The lasagna-like Co-2(OH)(2)CO3-GO nanocomposites exhibit an ultrahigh lithium storage capacity of 1770 mAh g(-1) after 500 cycles at 100 mA g(-1). It is noteworthy that the cycled Co-2(OH)(2)CO3 phase separates into homogeneously dispersed Co(OH)(2) and CoCO3 phases with two different charge plateaus at approximate to 1.2 and 2.0 V, respectively, which effectively inhibit large-scale homophase coarsening of Co, Li2CO3, and LiOH. The much shortened Li+/e(-) transfer distance enabled by individual ultrathin Co-2(OH)(2)CO3 nanosheet together with robust layer-by-layer assembled nanostructure of Co-2(OH)(2)CO3-GO confers the superior electrochemical reactivity and mechanical stability. As such, the amino acid-modified GO templating strategy may represent a simple yet robust means of crafting a variety of 2D nanostructured composites of interest for energy storage applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available