4.8 Article

Ruthenium-Based Single-Atom Alloy with High Electrocatalytic Activity for Hydrogen Evolution

Journal

ADVANCED ENERGY MATERIALS
Volume 9, Issue 20, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201803913

Keywords

electrocatalysts; hydrogen evolution reaction; pulsed laser ablation; single-atom alloys; synergistic effect

Funding

  1. Natural Science Foundation of China [51871160, 51671141, 51471115, 51402084, 51471079]

Ask authors/readers for more resources

Highly efficient and stable catalysts for the hydrogen evolution reaction, especially in alkaline conditions are crucial for the practical demands of electrochemical water splitting. Here, the synthesis of a novel RuAu single-atom alloy (SAA) by laser ablation in liquid is reported. The SAA exhibits a high stability and a low overpotential, 24 mV@10 mA cm(-2), which is much lower than that of a Pt/C catalyst (46 mV) in alkaline media. Moreover, the turnover frequency of RuAu SAA is three times that of Pt/C catalyst. Density functional theory computation indicates the excellent catalytic activity of RuAu SAAs originates from the relay catalysis of Ru and Au active sites. This work opens a new avenue toward high-performance SAAs via fast quenching of immiscible metals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available