4.8 Article

The neural dynamics of hierarchical Bayesian causal inference in multisensory perception

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-019-09664-2

Keywords

-

Funding

  1. University of Tuebingen [2292-0-0, 2454-0-0]
  2. Deutsche Forschungsgemeinschaft (DFG) [RO 5587/1-1]
  3. ERC [309349]
  4. European Research Council (ERC) [309349] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Transforming the barrage of sensory signals into a coherent multisensory percept relies on solving the binding problem - deciding whether signals come from a common cause and should be integrated or, instead, segregated. Human observers typically arbitrate between integration and segregation consistent with Bayesian Causal Inference, but the neural mechanisms remain poorly understood. Here, we presented people with audiovisual sequences that varied in the number of flashes and beeps, then combined Bayesian modelling and EEG representational similarity analyses. Our data suggest that the brain initially represents the number of flashes and beeps independently. Later, it computes their numbers by averaging the forced-fusion and segregation estimates weighted by the probabilities of common and independent cause models (i.e. model averaging). Crucially, prestimulus oscillatory alpha power and phase correlate with observers' prior beliefs about the world's causal structure that guide their arbitration between sensory integration and segregation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available