4.7 Article

Pharmacodynamics of Voriconazole in Children: Further Steps along the Path to True Individualized Therapy

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 60, Issue 4, Pages 2336-2342

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.03023-15

Keywords

-

Funding

  1. National Institute of Health Research [CS_08_08]
  2. HHS\ National Institutes of Health (NIH) [NICHD R01 HD070886]
  3. National Institute for Health Research [CS/08/08/10] Funding Source: researchfish

Ask authors/readers for more resources

Voriconazole is the agent of choice for the treatment of invasive aspergillosis in children at least 2 years of age. The galactomannan index is a routinely used diagnostic marker for invasive aspergillosis and can be useful for following the clinical response to antifungal treatment. The aim of this study was to develop a pharmacokinetic-pharmacodynamic (PK-PD) mathematical model that links the pharmacokinetics of voriconazole with the galactomannan readout in children. Twelve children receiving voriconazole for treatment of proven, probable, and possible invasive fungal infections were studied. A previously published population PK model was used as the Bayesian prior. The PK-PD model was used to estimate the average area under the concentration-time curve (AUC) in each patient and the resultant galactomannan-time profile. The relationship between the ratio of the AUC to the concentration of voriconazole that induced half maximal killing (AUC/EC50) and the terminal galactomannan level was determined. The voriconazole concentration-time and galactomannan-time profiles were both highly variable. Despite this variability, the fit of the PK-PD model was good, enabling both the pharmacokinetics and pharmacodynamics to be described in individual children. (AUC/EC50)/15.4 predicted terminal galactomannan (P = 0.003), and a ratio of >6 suggested a lower terminal galactomannan level (P = 0.07). The construction of linked PK-PD models is the first step in developing control software that enables not only individualized voriconazole dosages but also individualized concentration targets to achieve suppression of galactomannan levels in a timely and optimally precise manner. Controlling galactomannan levels is a first critical step to maximizing clinical response and survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available