4.8 Article

New insights into antibiotic resistome in drinking water and management perspectives: A metagenomic based study of small-sized microbes

Journal

WATER RESEARCH
Volume 152, Issue -, Pages 191-201

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2018.12.069

Keywords

Drinking water; Public health; Antibiotic resistome; Pathogenic host; Metagenomic sequencing

Funding

  1. Hong Kong General Research Fund [172057/15E]
  2. Shenzhen Knowledge Innovation Program-Basic Research Project [JCYJ20150831192847649]

Ask authors/readers for more resources

The proliferation of antibiotic resistance genes (ARGs) in drinking water and their potential horizontal transfer to pathogenic microbes may cause failure of antibiotics. However, antimicrobial resistome monitoring in drinking water is not currently routine. The bacterial hosts of ARGs, especially small-sized microbes in drinking water, may not be effectively removed by membrane filtration disinfection and thus pose threats to human health. In the present study, using metagenomic based approach, we investigated antibiotic resistome of small-sized microbes (0.2-0.45 mu m) in 20 household drinking water samples from 12 cities in Mainland China, Hong Kong and Singapore. A total of 265 ARG subtypes belonging to 17 ARG types were detected at abundances ranging from 4.0 x 10(-2) to 1.0 x 10(0) copies/cell. Multidrug, bacitracin and aminoglycoside resistance genes are dominant, and 43 ARG subtypes were specifically carried by small-size microbes. Metagenomic assembly strategy revealed fragments of three opportunistic pathogen, i.e. Pseudomonas alcaligenes, Pseudomonas aeruginosa and Mycobacterium gordonae, carried mexW, aph(3')-I and aac(2')-I, respectively. Drinking water samples were classified into three groups based on the presence of ARG, pathogen and ARG-carrying pathogen. These new insights into the antibiotic resistome of small microbes in drinking water over a broad scale indicate the need for more comprehensive ARGs monitoring and surveillance of drinking water supplies. These findings, together with the perspectives and strategies proposed in this study, could support initiatives to improve drinking water safety. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available