4.7 Article

Combustible waste collected at Danish recycling centres: Characterisation, recycling potentials and contribution to environmental savings

Journal

WASTE MANAGEMENT
Volume 89, Issue -, Pages 354-365

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.wasman.2019.04.007

Keywords

Sampling; Contamination; Circular economy; Recycling rate; Life cycle assessment; Climate change

Funding

  1. Danish Environmental Protection Agency (Miljostyrelsen)

Ask authors/readers for more resources

Europe is currently adapting its waste management strategies towards the increased recycling of waste materials, motivated by ambitious recycling targets. This requires correctly sorting and recovering of all relevant waste flows. In Denmark, a considerable share of residential household waste is collected at recycling centres, 16% of which is sent to energy recovery in the form of small combustible waste. Although essential in order to enhance the management of household waste, very little information exists on its composition. In this study, 25 tonnes of small combustible waste were sampled from eight Danish recycling centres and classified according to material fraction, application and physical properties. On this basis, the potential contribution to the overall recycling rate was evaluated together with estimation of the potential environmental savings associated with recycling of these fractions. Less than half of the sampled waste comprised combustible materials, whereas recyclable fractions accounted for 47-64%, mainly including textiles, plastics and paper waste. Assuming this composition applicable to the national level, recycling these waste materials collected as small combustibles increased national recycling rates for households by 12%, calculated as waste received at recycling processes. Moreover, the potential climate change savings associated with recycling of Danish household waste increased by 30% compared to the current level. Plastics, textiles and paper were the main contributors to this increase, suggesting that improved sorting practices for these materials should be prioritised. The study demonstrates that detailed compositional data for waste materials has paramount importance when estimating recycling potentials and quantifying the associated environmental benefits. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available