4.2 Article

Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions

Journal

TRANSFUSION
Volume 59, Issue 7, Pages 2403-2414

Publisher

WILEY
DOI: 10.1111/trf.15300

Keywords

-

Categories

Funding

  1. Amis de Remi Association
  2. Etablissement Francais du Sang (EFS)
  3. Canadian Institutes of Health Research (CIHR)
  4. CIHR
  5. Canadian Blood Services
  6. MITACS

Ask authors/readers for more resources

BACKGROUND: Whereas platelet transfusion is a common medical procedure, inflammation still occurs in a fraction of transfused individuals despite the absence of any apparent infectious agents. Platelets can shed membrane vesicles, called extracellular vesicles (EVs), some of which contain mitochondria (mito+EV). With its content of damage-associated molecular pattern (DAMP), the mitochondrion can stimulate the innate immune system. Mitochondrial DNA (mtDNA) is a recognized DAMP detected in the extracellular milieu in numerous inflammatory conditions and in platelet concentrates. We hypothesized that platelet-derived mitochondria encapsulated in EVs may represent a reservoir of mtDNA. STUDY DESIGN AND METHODS: Herein, we explored the implication of mito+EVs in the occurrence of mtDNA quantified in platelet concentrate supernatants that induced or did not induce transfusion adverse reactions. RESULTS: We observed that EVs were abundant in platelet concentrates, and platelet-derived mito+EVs were more abundant in platelet concentrates that induced adverse reactions. A significant correlation (r(s) = 0.73; p < 0.0001) between platelet-derived mito+EV levels and mtDNA concentrations was found. However, there was a nonsignificant correlation between the levels of EVs without mitochondria and mtDNA concentrations (r(s) = -0.11; p = 0.5112). The majority of the mtDNA was encapsulated into EVs. CONCLUSION: This study suggests that platelet-derived EVs, such as those that convey mitochondrial DAMPs, may be a useful biomarker for the prediction of potential risk of adverse transfusion reactions. Moreover, our work implies that investigations are necessary to determine whether there is a causal pathogenic role of mitochondrial DAMP encapsulated in EVs as opposed to mtDNA in solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available