4.7 Article

The promotion effect of novel magnetic nanoparticles on atherosclerotic plaque vulnerability in apolipoprotein E-/-mice

Journal

TOXICOLOGY
Volume 419, Issue -, Pages 24-31

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2019.03.002

Keywords

agnetic nanoparticles; Plaque vulnerability; Vascular endothelial cells; NO; eNOS

Funding

  1. National Natural Science Foundation of China [91539105, 81321061]
  2. Natural Science Foundation of Shandong Province [ZR2016CM01]
  3. National 973 Research Project [2010CB933504]

Ask authors/readers for more resources

Although manufactured magnetic nanoparticles (NPs) are currently used in many fields, NPs have potential toxicity on cardiovascular system especially atherosclerosis. In our previous study, we prepared novel Fe3O4 nanoparticles surface-coated with aminoguanidine (Fe3O4-AG NPs) which could remove acid dyes from aqueous solution efficiently. To understand its biocompatibility to atherosclerotic plaque vulnerability, we investigated the effects of the nanoparticles on human umbilical vein endothelial cells (HUVECs) in vitro and plaque stability in vivo. Fe3O4-AG NPs were taken up by HUVECs and induced HUVEC apoptosis. Fe3O4-AG NP injection remarkably promoted plaque vulnerability at low-dose (0.5 mg/kg) but not high-dose (5.0 mg/kg) in apolipoprotein E-/- (ApoE(-/-)) mice. Further study indicated that Fe3O4-AG NP-induced atherosclerotic plaque vulnerability was tightly linked to bioactivity of nitric oxide (NO). A significant decrease in NO production was induced which coincided with the inhibition of endothelial nitric oxide synthase (eNOS) activity in serum and endothelium of plaque in ApoE(-/-) mice injected with low-dose Fe3O4-AG NPs in vivo and HUVECs treated with low-dose Fe3O4-AG NPs in vitro. Thus, the low concentration of Fe3O4-AG NPs presented toxicity to atherosclerosis. Our results indicated that the use of Fe3O4-AG NPs to improve aqueous solution pollution should be cautious due to the potential toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available