4.6 Article

Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway

Journal

THROMBOSIS RESEARCH
Volume 177, Issue -, Pages 23-32

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.thromres.2019.02.002

Keywords

BMSC; Exosome; MiR-486-5p; PTEN/PI3K/AKT; Apoptosis; Myocardial ischemia-reperfusion injury

Ask authors/readers for more resources

Background: Myocardial ischemia-reperfusion injury (MIRI) is a major obstacle in the treatment of ischemic heart disease. Recent studies have shown that exosomes-small membrane vesicles secreted by most cell types-could have a protective effect on the ischemic myocardium. In this study we explored the effect of exosomes derived from bone-marrow stromal cells (BMSC-exo) on cardiomyocyte apoptosis and MIRI. Methods: Exosomes were purified from culture media using the ExoQuick kit and observed using transmission electron microscopy. Cell viability was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Cell apoptosis was analyzed by flow cytometry using the Annexin-V/PI stain. The expression levels of microRNA (miRNA), messenger RNA (mRNA) and PTEN/PI3K/AKT-pathway-related proteins were detected by qRT-PCR and western blot, respectively. Myocardial ischemia was simulated by incubating H9C2 cells in a hypoxia/reoxygenation (H/R) conditioned rat MIRI model. Results: BMSC-exo induced the proliferation of H9C2 cells and rescued H9C2 cells from apoptosis in the H/R model, indicating that BMSC-exo has a protective effect on cardiomyocyte injury caused by H/R. Using transgenic H9C2 cells, we found that miR-486-5p in BMSC-exo suppressed the H/R-triggered apoptosis of H9C2 cells. In addition, BMSC-exo repressed the expression of PTEN in H9C2 cells via miR-486-5p, and subsequently activated the PI3K/AKT pathway in vitro. Moreover, the myocardial injury caused by ischemia/reperfusion was repaired by BMSC-exo which activates the PI3K/AKT pathway via miR-486-5p in vivo. Conclusion: Our results suggested that exosomes from BMSCs have a protective effect on myocardium ischemic injury. MiR-486-5p carried by BMSC-exo plays a pivotal role in the regulatory process by suppressing PTEN expression, activating the PI3K/AKT signaling pathway, and subsequently inhibiting the apoptosis of injured cardiomyocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available