4.5 Article

A conditional error function approach for adaptive enrichment designs with continuous endpoints

Journal

STATISTICS IN MEDICINE
Volume 38, Issue 17, Pages 3105-3122

Publisher

WILEY
DOI: 10.1002/sim.8154

Keywords

adaptive design; enrichment; interim analysis; multiple testing; subgroup analysis

Funding

  1. Bundesministerium fur Bildung und Forschung [05M13MGE BIMIT]
  2. Deutsches Zentrum fur Herz-Kreislaufforschung

Ask authors/readers for more resources

Adaptive enrichment designs offer an efficient and flexible way to demonstrate the efficacy of a treatment in a clinically defined full population or in, eg, biomarker-defined subpopulations while controlling the family-wise Type I error rate in the strong sense. Frequently used testing strategies in designs with two or more stages include the combination test and the conditional error function approach. Here, we focus on the latter and present some extensions. In contrast to previous work, we allow for multiple subgroups rather than one subgroup only. For nested as well as nonoverlapping subgroups with normally distributed endpoints, we explore the effect of estimating the variances in the subpopulations. Instead of using a normal approximation, we derive new t-distribution-based methods for two different scenarios. First, in the case of equal variances across the subpopulations, we present exact results using a multivariate t-distribution. Second, in the case of potentially varying variances across subgroups, we provide some improved approximations compared to the normal approximation. The performance of the proposed conditional error function approaches is assessed and compared to the combination test in a simulation study. The proposed methods are motivated by an example in pulmonary arterial hypertension.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available