4.7 Article

High-sensitive imprinted membranes based on surface-enhanced Raman scattering for selective detection of antibiotics in water

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2019.05.021

Keywords

Surface-enhanced Raman scattering; Molecular imprinted membranes; Selective detection; Antibiotics

Categories

Funding

  1. National Natural Science Foundation of China [21576112]
  2. Natural Science Foundation of Jilin Province [20180623042TC, 20180101181JC, 20170520147JH, 20150623024TC19]
  3. Project of Department of Science and Technology of Jilin Province [20180623042TC]
  4. Project of Education Department of Jilin Province [JJKH20180775KJ]
  5. Project of Human Resources and Social Security Department of Jilin Province [2017956]

Ask authors/readers for more resources

Poly(vinylidene fluoride) (PVDF) is known as one of the widely used membrane separation materials with excellent physical and chemical properties. In this work, we combine surface-enhanced Raman scattering (SERS) detection technology, membrane separation technology and molecular imprinting technology (MIT) to improve sensitivity and selectivity for selective detection of the enrofloxacin hydrochloride in water. In this investigation, PVDF membranes were used as the support materials and different experiment parameters were investigated to obtain the best property. Meanwhile, the Ag nanoparticles (Ag NPs) modified by 3-methacryloxypropyltrimethoxysilane (KH-570) were used as the SERS substrates and they were uniformly dispersed on the surface of the membrane. Finally, Ag-based SERS imprinted membranes (ASIMs) with specific recognition property were successfully prepared with enrofloxacin hydrochloride as the template molecule, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker agent and 2,2'-azobis(2-methylpropionitrile) (AIBN) as the initiator by a facile and versatile precipitation polymerization strategy. Under the optimal condition, it was presented good linear relationship (R-2 = 0.994) between the Raman signal (at 1390.8 cm(-1)) and the concentration (10(-3) mol.L-1-10(-7) mol.L-1) of the templates, and the limit of detection was determined as 10(-7) mol.L-1. The morphology and characters were investigated and the results proved that the SERS imprinted membranes could be used into the selective detection of antibiotics and it provided a novel approach of antibiotics detection. (C) 2019 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available