4.7 Article

Microbial C:N:P stoichiometry and turnover depend on nutrients availability in soil: A 14C, 15N and 33P triple labelling study

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 131, Issue -, Pages 206-216

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2019.01.017

Keywords

Microbial stoichiometry; Nutrient turnover; Microbial maintenance; Phosphorus limitation; Forest soils

Categories

Funding

  1. DFG special priority program 1685 Ecosystem nutrition: Forest strategies for limited phosphorus resources [KU 1184/36-1]
  2. German Research Foundation
  3. China Scholarship Council

Ask authors/readers for more resources

Microbial biomass turnover and the associated recycling of carbon (C-mic), nitrogen (N-mic) and phosphorus (P-mic) depend on their stoichiometric relationships and plays a pivotal role for soil fertility. This study examines the responses of C-mic, N-mic P-mic, the microbial respiration rate (CO2 efflux), and the total DNA content to C and nutrient addition in forest soils with very low (Low-P) and high P (High-P) contents. Both the Low-P and High-P soils were treated with a low and high level of C, N and P (5% and 200% of C-mic, N-mic and P-mic). Phosphorus (P-33) was added before the addition of C (C-14) and N (N-15) to investigate the potential P limitation. We hypothesized two modes of microbial biomass C and nutrient turnover: 1) maintenance through intracellular metabolisms and/or 2) microbial growth and death through necromass reutilization. In Low-P soil, the 2-day-sooner increase of C-mic and P-mic compared to the increase of CO2 efflux and DNA content after high CN input showed the rapid initial uptake of C and limiting nutrients into microbial cells. It also demonstrated a lag period before microbial growth commenced. In High-P soil, however, the CO2 efflux and DNA content increased simultaneously with increases in microbial biomass, reflecting the microbial capacity for immediate growth. Afterwards, CO2 efflux and DNA content dropped to the level before CNP addition, with a decline of C-mic and P-mic in Low-P soil and a decline of in High-P soil, suggesting a C and P limitation in Low-P soil and N limitation in High-P soil. Under low CNP addition, the microorganisms in High-P soil are ready to grow, while those in Low-P soil are mainly in maintenance mode. The microorganisms under maintenance in low-P soil can switch to growth/death mode after removing the nutrient limitation. High CNP input caused a non-homeostatic response of C-mic: N-mic: P-mic stoichiometry from 691:105:1 to 33:1:1 in Low-P soil, mainly resulting from a higher storage of the limiting elements (C and P) in microbial biomass. The ratio remained stable under low CNP addition due to the endogenous metabolism of C and nutrient at maintenance. The C and nutrient were turn-overed much faster by microorganisms in the growth/death mode, confirming a key principle of ecology: the stronger the limitation by an element, the more efficiently that element is retained within an organism, and the more intensively it is reused. The triple labeling approach linked with C-mic: N-mic: P-mic stoichiometry helped to identify the dominant maintenance and growth/death modes of microbial biomass CNP turnover in nutrient-limited and -unlimited soil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available