4.6 Article

System identification and robust tracking of a 3D printed soft actuator

Journal

SMART MATERIALS AND STRUCTURES
Volume 28, Issue 7, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-665X/ab1cce

Keywords

3D printed actuator; system identification; trajectory tracking; terminal sliding mode control

Ask authors/readers for more resources

Current three-dimensional (3D) printing allows for the fabrication of controllable 3D printed soft actuators with growing applications in soft robotics, like cell manipulation and drug delivery. Therefore, a precise and computationally efficient control algorithm for robust trajectory tracking of the 3D printed soft actuators has become important. The results of the primary model of the soft actuator deviated from experimental results due to uncertainties such as time-varying characteristics of the actuator. Hence, a second-order type nonsingular terminal sliding mode controller (NTSMC) for robust stabilization and trajectory tracking of the 3D printed actuator is proposed. It is shown via experiments that the system can track the predefined trajectory in the presence of modeling uncertainties using the proposed control scheme. The results are compared with the first order NTSMC and the conventional SMC via the experimental tests to verify tracking of the predefined trajectory and rejection of persistent disturbances of the designed controller.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available