4.8 Article

Oriented Polarization Tuning Broadband Absorption from Flexible Hierarchical ZnO Arrays Vertically Supported on Carbon Cloth

Journal

SMALL
Volume 15, Issue 18, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201900900

Keywords

carbon cloth; flexibility; microwave absorption; structure oriented; ZnO

Funding

  1. Ministry of Science and Technology of China [2018YFA0209102]
  2. National Natural Science Foundation of China [11727807, 51725101, 51672050, 61790581]
  3. Science and Technology Commission of Shanghai Municipality [16DZ2260600]

Ask authors/readers for more resources

A novel strategy is used to design large-scale polarized carbon-based dielectric composites with sufficient interaction to electromagnetic waves. Highly uniform polar zinc oxide arrays are vertically grown on a flexible conductive carbon cloth substrate (CC@ZnO) via an in situ orientation growth process. Anion regulation is found to be a key factor to the morphology of hierarchical ZnO arrays including single-rod, cluster and tetrapod-shaped. As a typical dielectric loss hybrid composite, the electromagnetic parameters of the CC@ZnO system and charge density distribution in polarized ZnO rods confirm that the 3D intertwined carbon cloth is used as a conductive network to provide ballistic electron transportation. Moreover, the defect-rich ZnO arrays are well in contact with the CC substrate, favoring interface polarization, multiscattering, as well as impedance matching. Surprisingly, the efficient absorption bandwidth of the CC@ZnO-1 composite can reach 10.6 GHz, covering all X and Ku bands. The oriented ZnO possesses oxygen vacancies and exposure to a large amount of intrinsic polar surfaces, encouraging the polarization behavior under microwave frequency. Optimized CC@ZnO materials exhibit fast electron transportation, strong microwave energy dissipation, and superior wide absorption. The results suggest that the CC@ZnO composites have promising potential as flexible, tuning, and broadband microwave absorbers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available