4.6 Review Book Chapter

Computational Amide I 2D IR Spectroscopy as a Probe of Protein Structure and Dynamics

Journal

ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 67
Volume 67, Issue -, Pages 359-386

Publisher

ANNUAL REVIEWS
DOI: 10.1146/annurev-physchem-040215-112055

Keywords

molecular dynamics simulations; ultrafast spectroscopy; conformational heterogeneity; protein folding; structural ensembles

Ask authors/readers for more resources

Two-dimensional infrared spectroscopy of amide I vibrations is increasingly being used to study the structure and dynamics of proteins and peptides. Amide I, a primarily carbonyl stretching vibration of the protein backbone, provides information on secondary structures as a result of vibrational couplings and on hydrogen-bonding contacts when isotope labeling is used to isolate specific sites. In parallel with experiments, computational models of amide I spectra that use atomistic structures from molecular dynamics simulations have evolved to calculate experimental spectra. Mixed quantum-classical models use spectroscopic maps to translate the structural information into a quantum-mechanical Hamiltonian for the spectroscopically observed vibrations. This allows one to model the spectroscopy of large proteins, disordered states, and protein conformational dynamics. With improvements in amide I models, quantitative modeling of time-dependent structural ensembles and of direct feedback between experiments and simulations is possible. We review the advances in developing these models, their theoretical basis, and current and future applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available