4.5 Article

Proteomics profiling of arginine methylation defines PRMT5 substrate specificity

Journal

SCIENCE SIGNALING
Volume 12, Issue 575, Pages -

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/scisignal.aat8388

Keywords

-

Funding

  1. Italian Association for Cancer Research [AIRC [15741]]
  2. Italian Ministry of Health [GR-2011-02347880]
  3. CNR-EPIGEN flagship project
  4. Fondazione Umberto Veronesi (FUV) fellowship
  5. Fondazione Istituto Europeo di Oncologia (FIEO) fellowship
  6. A*STAR SINGA fellowship
  7. A*STAR returning scholar funds
  8. CRP award [NRF2016-CRP001-103]
  9. RNA Biology Center at the Cancer Science Institute (CSI) of Singapore
  10. National University of Singapore
  11. Singapore Ministry of Education's Tier 3 grants [MOE2014-T3-1-006]

Ask authors/readers for more resources

Protein arginine methyltransferases (PRMTs) catalyze arginine methylation on both chromatin-bound and cytoplasmic proteins. Accumulating evidence supports the involvement of PRMT5, the major type II PRMT, in cell survival and differentiation pathways that are important during development and in tumorigenesis. PRMT5 is an attractive drug target in various cancers, and inhibitors are currently in oncological clinical trials. Nonetheless, given the complex biology of PRMT5 and its multiple nonhistone substrates, it is paramount to fully characterize these dynamic changes in methylation and to link them to the observed anticancer effects to fully understand the functions of PRMT5 and the consequences of its inhibition. Here, we used a newly established pipeline coupling stable isotope labeling with amino acids in cell culture (SILAC) with immunoenriched methyl peptides to globally profile arginine monomethylation and symmetric dimethylation after PRMT5 inhibition by a selective inhibitor. We adopted heavy methyl SILAC as an orthogonal validation method to reduce the false discovery rate. Through in vitro methylation assays, we validated a set of PRMT5 targets identified by mass spectrometry and provided previously unknown mechanistic insights into the preference of the enzyme to methylate arginine sandwiched between two neighboring glycines (a Gly-Arg-Gly, or GRG, sequence). Our analysis led to the identification of previously unknown PRMT5 substrates, thus both providing insight into the global effects of PRMT5 and its inhibition in live cells, beyond chromatin, and refining our knowledge of its substrate specificity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available