4.7 Article

Influences of 1.5 °C and 2.0 °C global warming scenarios on water use efficiency dynamics in the sandy areas of northern China

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 664, Issue -, Pages 161-174

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.01.402

Keywords

WUE; 1.5 degrees C warming; 2.0 degrees C warming; Desertification; Northern China

Funding

  1. National Natural Science Foundation of China [41671030, U1403281]
  2. Natural Science Foundation of Jiangsu Province [BK20181059]
  3. National Basic Research Program of China [2013CB429903]
  4. Thousand Young Talents Program, Chinese Academy of Sciences [Y772121]

Ask authors/readers for more resources

Water use efficiency (WUE) is an important variable used in hydrometeorology study to reveal the links between carbon-water cycles in sandy ecosystems which are highly sensitive to climate change and can readily reflect the effects of it. In light of the Paris Agreement, it is essential to identify the regional impacts of 0.5 degrees C of additional global warming to inform climate adaptation and mitigation strategies. Using the modified Carnegie-Ames-Stanford Approach (CASA) and Advection-Aridity (AA) models with global warming values of 1.5 degrees C and 2.0 degrees C above preindustrial levels from Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b) datasets, we conducted a new set of climate simulations to assess the effects of climate on WUE (the ratio of net primary productivity (NPP) to actual evapotranspiration (ETa)) in different sandy land types (mobile sandy land, MSL; semimobile/semifixed sandy land, SMSF; and fixed sandy land, FSL) during the period of baseline (1986-2005) and future (2006-2100). The spatiotemporal patterns of ETa, NPP, and WUE mostly showed increasing trends; the value of WUE decreased (6.40%) only in MSL with an additional 0.5 degrees C of warming. Meteorological and vegetation factors determined the variations in WUE. With warming, only the correlation between precipitation and WUE decreased in the three sandy land types, and the leaf area index (LAI) increased with an additional 0.5 degrees C of warming. The desertification degree comprehensively reflects the linkages among the standardized precipitation evapotranspiration index (SPEI), LAI and WUE. Simulation results indicated the sandy area extent could potential increase by 20 x 10(4) km(2) per decade on average during 2016-2047 and that the increase could be gradual (2.60 x 10(4) km(2) per decade) after 2050 (2050-2100). These results highlight the benefits of limiting the global mean temperature change to 1.5 degrees C above preindustrial levels and can help identify the risk of desertification with an additional 0.5 degrees C of warming. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available