4.7 Article

Building-Integrated Photovoltaic/Thermal (BIPVT): LCA of a facade-integrated prototype and issues about human health, ecosystems, resources

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 660, Issue -, Pages 1576-1592

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2018.12.461

Keywords

Life Cycle Assessment (LCA); Building-Integrated Photovoltaic/Thermal (BIPVT); Greenhouse-Gas (GHG) emissions; Cumulative Energy Demand (CED); Human health; Ecosystems Resources; Human toxicity; Ecotoxicity

Funding

  1. Ministerio de Economia y Competitividad of Spain [ENE2016-81040-R]

Ask authors/readers for more resources

Building-Integrated Photovoltaic/Thermal (BIPVT) technology offers multiple advantages; however, these types of installations include materials such as Photovoltaic (PV) cells and metals which considerably influence BIPVT environmental impact. Therefore, there is a need to evaluate BIPVT environmental profile, for instance by means of Life Cycle Assessment (LCA). In light of the issues mentioned above, the present article is an LCA study that assesses the environmental performance of a BIPVT prototype that has been developed and patented at the Ulster University (Belfast, UK). The investigation places emphasis on material manufacturing, based on Cumulative Energy Demand (CED), Global Warming Potential (GWP), ReCiPe, Ecological footprint and USEtox. The results show that according to all the adopted methods/environmental indicators and based on primary materials, the PV cells and the two vessels (steel) are the components with the three highest impacts. Scenarios which include recycling of steel, plastics and brass (land fill for the other materials has been assumed), based on CED, GWP 100a and ReCiPe endpoint, have been examined. It was found that steel recycling offers a considerable impact reduction, ranging from 47% to 85%. Furthermore, the impact of the proposed BIPVT module per m(2) of thermal absorber has been calculated. The results, based on primary materials, show 4.92 GJ(prim)/m(2) and 0.34 t CO2.eq/m(2) (GWP 100a). In addition, according to USEtox/ecotoxicity, USEtox/human toxicity-non-cancer (scenario based on primary materials), the PV cells present the highest contributions to the total impact of the module: 55% in terms of ecotoxicity and 86% concerning human toxicity/non-cancer. A comparison with literature is provided. Moreover, a separate section of the article is about factors which influence BIPVT environmental profile, discussing parameters such as the storage materials and the end-of-life management. (C) 2019 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available