4.7 Article

Novel stochastic methods to predict short-term solar radiation and photovoltaic power

Journal

RENEWABLE ENERGY
Volume 145, Issue -, Pages 333-346

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2019.05.073

Keywords

Renewable energy; Solar forecasting; Photovoltaics; Solar variability; Stochastic forecasting; Basis functions

Funding

  1. U.S. Department of En-ergy, Office of Energy Efficiency and Renewable Energy [DE-AC05-00OR22725]

Ask authors/readers for more resources

Solar forecasting has evolved towards becoming a key component of economical realization of high penetration levels of photovoltaic (PV) systems. This paper presents two novel stochastic forecasting models for solar PV by utilizing historical measurement data to outline a short-term high-resolution probabilistic behavior of solar. First, an uncertain basis functions method is used to forecast both solar radiation and PV power. Three possible distributions are considered for the uncertain basis functions Gaussian, Laplace, and Uniform distributions. Second, stochastic state-space models are applied to characterize the behaviors of solar radiation and PV power output. A filter-based expectation-maximization and Kalman filtering mechanism is employed to recursively estimate the system parameters and state variables. This enables the system to accurately forecast small as well as large fluctuations of the solar signals. The introduced forecasting models are suitable for real-time tertiary dispatch controllers and optimal power controllers. The PV forecasting models are tested using solar radiation and PV power measurement data collected from a 13.5 kW PV panel installed on the rooftop of our laboratory. The results are compared with standard time series forecasting mechanisms and show a substantial improvement in the forecasting accuracy of the total energy produced. (C) 2019 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available