4.7 Article

The definition of remotely sensed reflectance quantities suitable for rugged terrain

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 225, Issue -, Pages 403-415

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2019.01.005

Keywords

BRDF/BRF; Rugged terrain; DART model; Remote sensing; Standardization

Funding

  1. Chinese Natural Science Foundation Project [41671363, 41830648]
  2. National Key Research and Development Program of China [2018YFA0605503]

Ask authors/readers for more resources

The anisotropic scattering behavior of land surface is characterized by its bidirectional reflectance-distribution function (BRDF). However, a physically consistent BRDF definition is still lacking for heterogeneous and rugged terrain that accounts for approximately 24% of Earth's land surface. In this study, we revisited current BRDF definitions and updated them for rugged terrain with few dependent parameters: illumination and viewing geometries, terrain shadows, effective areas of illumination and observation, and anisotropic reflectance properties of subpixel-scale slopes. Furthermore, the bidirectional reflectance factor (BRF), hemispherical-directional reflectance factor (HDRF), directional-hemispheric reflectance (DHR), and bi-hemispherical reflectance (BHR) were proposed within the current physical framework of reflectance quantities. These reflectance quantities have been adopted by the 3-D Discrete Anisotropic Radiative Transfer (DART) model to provide the simulations of remote sensing images. To highlight the importance of a proper usage of such reflectance terms, we used DART simulations to present the topographic effects on these reflectance quantities. Finally, the other issues with respect to surface BRDF/BRF, such as spatial scale of rugged terrain, characterization of anisotropic reflectance of micro-scale surfaces, derivative reflectance quantities, topographic parameters, wavelength dependence and reciprocity, and future perspective were discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available