4.7 Article

Lyme neuroborreliosis and bird populations in northern Europe

Journal

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2019.0759

Keywords

tick-borne diseases; host populations; genospecies; birds; Lyme borreliosis; epidemiology

Funding

  1. Research Council of Norway
  2. Norwegian Environment Agency [254469]
  3. Faculty of Mathematics and Natural Sciences, UiO
  4. Fund for Scientific Research-Flanders (FWO)
  5. Bill & Melinda Gates Foundation
  6. Marie Sklodowska-Curie Actions (EU-Horizon 2020, Individual Global Fellowship) [799609]
  7. Marie Curie Actions (MSCA) [799609] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

Many vector-borne diseases are transmitted through complex pathogen-vector-host networks, which makes it challenging to identify the role of specific host groups in disease emergence. Lyme borreliosis in humans is now the most common vector-borne zoonosis in the Northern Hemisphere. The disease is caused by multiple genospecies of Borrelia burgdorferi sensu lato bacteria transmitted by ixodid (hard) ticks, and the major host groups transmit Borrelia genospecies with different pathogenicity, causing variable clinical symptoms in humans. The health impact of a given host group is a function of the number of ticks it infects as well as the pathogenicity of the genospecies it carries. Borrelia afzelii, with mainly small mammals as reservoirs, is the most common pathogen causing Lyme borreliosis, and it is often responsible for the largest proportion of infected host-seeking tick nymphs in Europe. The bird-borne Borrelia garinii, though less prevalent in nymphal ticks, is more likely to cause Lyme neuroborreliosis, but whether B. garinii causes disseminated disease more frequently has not been documented. Based on extensive data of annual disease incidence across Norway from 1995 to 2017, we show here that 69% of disseminated Lyme borreliosis cases were neuroborreliosis, which is three times higher than predicted from the infection prevalence of B. garinii in host-seeking ticks (21%). The population estimate of migratory birds, mainly of thrushes, explained part of the annual variation in cases of neuroborreliosis, with a one-year time lag. We highlight the important role of the genospecies' pathogenicity and the host associations for understanding the epidemiology of disseminated Lyme borreliosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available