4.8 Article

Environmental DNA for improved detection and environmental surveillance of schistosomiasis

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1815046116

Keywords

schistosomiasis; Schistosoma mansoni; environmental DNA; snails; elimination

Funding

  1. Augustinus Foundation
  2. Knud Hojgaards Foundation
  3. Danish National Research Foundation
  4. Lundbeck Foundation
  5. KU2016
  6. Danish National Research Foundation [DNRF96]

Ask authors/readers for more resources

Schistosomiasis is a water-based, infectious disease with high morbidity and significant economic burdens affecting >250 million people globally. Disease control has, with notable success, for decades focused on drug treatment of infected human populations, but a recent paradigm shift now entails moving from control to elimination. To achieve this ambitious goal, more sensitive diagnostic tools are needed to monitor progress toward transmission interruption in the environment, especially in low-intensity infection areas. We report on the development of an environmental DNA (eDNA)-based tool to efficiently detect DNA traces of the parasite Schistosoma mansoni directly in the aquatic environment, where the nonhuman part of the parasite life cycle occurs. This is a report of the successful detection of S. mansoni in freshwater samples by using aquatic eDNA. True eDNA was detected in as few as 10 cercariae per liter of water in laboratory experiments. The field applicability of the method was tested at known transmission sites in Kenya, where comparison of schistosome detection by conventional snail surveys (snail collection and cercariae shedding) with eDNA (water samples) showed 71% agreement between the methods. The eDNA method furthermore detected schistosome presence at two additional sites where snail shedding failed, demonstrating a higher sensitivity of eDNA sampling. We conclude that eDNA provides a promising tool to substantially improve the environmental surveillance of S. mansoni. Given the proper method and guideline development, eDNA could become an essential future component of the schistosomiasis control tool box needed to achieve the goal of elimination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available