4.3 Article

Influence of struts on cavity at subsonic speeds: Flow characteristics

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954410019843726

Keywords

Turbine-based combined cycle engine; cavity-strut; flow field; mass exchange rate; cavity residence time

Ask authors/readers for more resources

Cavity-strut combined flame holder is a promising choice for turbine-based combined cycle engines with its excellent fuel distribution and flame stabilization. In this paper, the effects of the strut structure parameters on the flow characteristics in the cavity were investigated by using particle image velocimetry and numerical simulation. Experimental and numerical results show that the struts induce complex three-dimensional flow patterns, which have a significant influence on the cavity transverse vortex. The relative position between the cavity and the strut influences the critical length-to-depth ratio of the open cavity reverting to the closed cavity. The mass exchange rate of the cavity decreases with the increase in the space between the cavity and the struts, while it increases with the strut inclination angle increases. The variation law of mean cavity residence time with the structure parameters is exactly opposite to that of the mass exchange rate. Compared with a single cavity, at a high subsonic speed, the cavity-strut combined structure has the advantage of increasing the mass exchange rate and cavity residence time simultaneously.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available