4.7 Article

Nanoscale film morphology and property characteristics of dielectric polymers bearing monomeric and dimeric adamantane units

Journal

POLYMER
Volume 169, Issue -, Pages 225-233

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2019.02.053

Keywords

Poly(adamantane)s; Adamantane-containing polymers; Nanoscale thin films; Amorphous morphology; Random chain orientation; Zero birefringence; Optical isotropy; Isotropic dielectric constant; Refractive index; Critical angle; Electron density; Mass density

Funding

  1. JSPS

Ask authors/readers for more resources

In this study, we report for the first time the thin film morphology and property characteristics of a series of adamantane-containing polymers, which were investigated by using synchrotron grazing incidence X-ray scattering, X-ray reflectivity and spectroscopic ellipsometry. The chemically incorporated monomeric and dimeric adamantane units could disturb regular chain packing, ultimately producing amorphous polymers. They further tend to randomize chain orientations even in nanoscale thin films; surprisingly, random chain orientations could be achieved even for thermally-annealed thin films, which are quite different from the in-plane orientations of conventional polymer films being enhanced by thermal annealing. As a result, isotropic optical refractive indices and dielectric constants could be demonstrated even in nanoscale thin films, which are highly demanded for the production of advanced microelectronic devices. Moreover, the adamantane units incorporated into the back-bone and as primary side groups could significantly reduce the dielectric constant, refractive index, critical angle, electron density and mass density of polymer. Overall, the positive impacts of incorporated adamantane units are huge on the polymer morphology and properties. All adamantane-containing polymers of this study are suitable materials for advanced microelectronics, which can replace current workhorse dielectrics, such as silicon oxide, silicon nitride, and polyimides, being used in microelectronic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available