4.7 Article

Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals

Journal

BIOMACROMOLECULES
Volume 16, Issue 8, Pages 2455-2462

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.5b00701

Keywords

-

Funding

  1. NSERC CREATE IDEM program
  2. U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]

Ask authors/readers for more resources

Nanofibrillar hydrogels are an important class of biomaterials with applications as catalytic scaffolds, artificial extracellular matrixes, coatings, and drug delivery materials. In the present work, we report the results of a comprehensive study of nanofibrillar hydrogels formed by cellulose nanocrystals (CNCs) in the presence of cations with various charge numbers and ionic radii. We examined sol gel transitions in aqueous CNC suspensions and the rheological and structural properties of the CNC hydrogels. At a particular CNC concentration, with increasing charge and cation size, the dynamic shear moduli and mesh size in the hydrogel increased. These effects were ascribed to a stronger propensity of CNCs for side-by-side association. The resulting hydrogels had an isotropic nanofibrillar structure. A combination of complementary techniques offered insight into structure-property relationships of CNC hydrogels, which are important for their potential applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available