4.5 Article

Inhibition of neogenin promotes neuronal survival and improved behavior recovery after spinal cord injury

Journal

NEUROSCIENCE
Volume 408, Issue -, Pages 430-447

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2019.03.055

Keywords

Neogenin; RGMa; apoptosis; spinal cord regeneration; lamprey; Mauthner neuron

Categories

Funding

  1. Shriners Hospitals for Children (USA) [SHC-85310, SHC-84297]

Ask authors/readers for more resources

Following spinal cord trauma, axonal regeneration in the mammalian spinal cord does not occur and functional recovery may be further impeded by retrograde neuronal death. By contrast, lampreys recover after spinal cord injury (SCI) and axons re-connected to their targets in spinal cord. However, the identified reticulospinal (RS) neurons located in the lamprey brain differ in their regenerative capacities - some are good regenerators, and others are bad regenerators despite the fact that they have analogous projection pathways. Previously, we reported that axonal guidance receptor Neogenin involved in regulation of axonal regeneration after SCI and downregulation of Neogenin synthesis by morpholino oligonucleotides (MO) enhanced the regeneration of RS neurons. Incidentally, the bad regenerating RS neurons often undergo a late retrograde apoptosis after SCI. Here we report that, after SCI, expression of RGMa mRNA was upregulated around the transection site, while its receptor Neogenin continued to be synthesized almost inclusively in the bad-regenerating RS neurons. Inhibition of Neogenin by MO prohibited activation of caspases and improved the survival of RS neurons at 10 weeks after SCI. These data provide new evidence in vivo that Neogenin is involved in retrograde neuronal death and failure of axonal regeneration after SCI. (C) 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available