4.7 Article

A subcortical excitatory circuit for sensory-triggered predatory hunting in mice

Journal

NATURE NEUROSCIENCE
Volume 22, Issue 6, Pages 909-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41593-019-0405-4

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [31671095, 31422026, 81471311, 31771150, 91632301]

Ask authors/readers for more resources

Predatory hunting plays a fundamental role in animal survival. Little is known about the neural circuits that convert sensory cues into neural signals to drive this behavior. Here we identified an excitatory subcortical neural circuit from the superior colliculus to the zona incerta that triggers predatory hunting. The superior colliculus neurons that form this pathway integrate motion-related visual and vibrissal somatosensory cues of prey. During hunting, these neurons send out neural signals that are temporally correlated with predatory attacks, but not with feeding after prey capture. Synaptic inactivation of this pathway selectively blocks hunting for prey without impairing other sensory-triggered behaviors. These data reveal a subcortical neural circuit that is specifically engaged in translating sensory cues into neural signals to provoke predatory hunting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available