4.8 Article

Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index

Journal

NATURE BIOTECHNOLOGY
Volume 37, Issue 6, Pages 640-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41587-019-0106-2

Keywords

-

Funding

  1. Ionis Pharmaceuticals

Ask authors/readers for more resources

The molecular mechanisms of toxicity of chemically modified phosphorothioate antisense oligonucleotides (PS-ASOs) are not fully understood. Here, we report that toxic gapmer PS-ASOs containing modifications such as constrained ethyl (cEt), locked nucleic acid (LNA) and 2'-O-methoxyethyl (2'-MOE) bind many cellular proteins with high avidity, altering their function, localization and stability. We show that RNase Hi-dependent delocalization of paraspeckle proteins to nucleoli is an early event in PS-ASO toxicity, followed by nucleolar stress, p53 activation and apoptotic cell death. Introduction of a single 2'-O-methyl (2'-OMe) modification at gap position 2 reduced protein-binding, substantially decreasing hepatotoxicity and improving the therapeutic index with minimal impairment of antisense activity. We validated the ability of this modification to generally mitigate PS-ASO toxicity with more than 300 sequences. Our findings will guide the design of PS-ASOs with optimal therapeutic profiles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available