4.8 Article

A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1

Journal

NATURE
Volume 569, Issue 7758, Pages 718-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41586-019-1228-x

Keywords

-

Funding

  1. National Institutes of Health (NIH)
  2. National Institute of General Medical Sciences
  3. Howard Hughes Medical Institute
  4. Office of Science, Office of Basic Energy Sciences
  5. US Department of Energy [DE-AC02-05CH11231]
  6. NIH [S10 RR025080, S10 OD018142, R01 AI145287]
  7. Cancer Prevention and Research Institute of Texas [RP150454]
  8. Welch Foundation [A-1931-20170325]

Ask authors/readers for more resources

Nucleic acids from bacteria or viruses induce potent immune responses in infected cells(1-4). The detection of pathogen-derived nucleic acids is a central strategy by which the host senses infection and initiates protective immune responses(5,6). Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor(7,8). It catalyses the synthesis of cyclic GMP-AMP (cGAMP)(9-12), which stimulates the induction of type I interferons through the STING-TBK1-IRF-3 signalling axis(13-15). STING oligomerizes after binding of cGAMP, leading to the recruitment and activation of the TBK1 kinase(8,16). The IRF-3 transcription factor is then recruited to the signalling complex and activated by TBK1(8,17-20). Phosphorylated IRF-3 translocates to the nucleus and initiates the expression of type I interferons(21). However, the precise mechanisms that govern activation of STING by cGAMP and subsequent activation of TBK1 by STING remain unclear. Here we show that a conserved PLPLRT/SD motif within the C-terminal tail of STING mediates the recruitment and activation of TBK1. Crystal structures of TBK1 bound to STING reveal that the PLPLRT/SD motif binds to the dimer interface of TBK1. Cell-based studies confirm that the direct interaction between TBK1 and STING is essential for induction of IFN beta after cGAMP stimulation. Moreover, we show that full-length STING oligomerizes after it binds cGAMP, and highlight this as an essential step in the activation of STING-mediated signalling. These findings provide a structural basis for the development of STING agonists and antagonists for the treatment of cancer and autoimmune disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available