4.6 Article

Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis

Journal

NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE
Volume 17, Issue -, Pages 188-197

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nano.2019.01.007

Keywords

Diabetic peripheral neuropathy; microRNA 146a; Nanoparticle; Inflammation; Apoptosis

Funding

  1. Shanghai Municipal Commission of Health and Family Planning [201540075]

Ask authors/readers for more resources

Nontoxic and nonimmunogenic nanoparticles play an increasingly important role in the application of pharmaceutical nanocarriers. The pathogenesis of diabetic peripheral neuropathy (DPN) has been extensively studied. However, the role of microRNAs in DPN remains to be clarified. We verified in vitro that miR-146a-5p mimics inhibited the expression of proinflammatory cytokines and apoptosis. Then, we explored the protective effect of nanoparticle-miRNA-146a-5p polyplexes (nano-miR-146a-5p) on DPN rats. We demonstrated that nano-miR-146a-5p improved nerve conduction velocity and alleviated the morphological damage and demyelination of the sciatic nerve of DPN rats. The expression of the inflammatory cytokines, caspase-3, and cleaved caspase-3 in the sciatic nerve was inhibited by nano-miR-146a-5p. Additionally, nano-miR-146a-5p increased the expression of myelin basic protein. These results all indicated that nano-miR-146a-5p had a protective effect on peripheral nerves in the DPN rat model, which may occur through the regulation of the inflammatory response and apoptosis. (C) 2019 The Authors. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available