4.5 Article

Phosphorus forms affect the hyphosphere bacterial community involved in soil organic phosphorus turnover

Journal

MYCORRHIZA
Volume 29, Issue 4, Pages 351-362

Publisher

SPRINGER
DOI: 10.1007/s00572-019-00896-0

Keywords

Arbuscular mycorrhizal fungi; Alkaline phosphatase; beta-Propeller phytase; Bacterial community composition; Hyphosphere; Organic phosphorus

Funding

  1. National Key Research and Development Program of China [2017YFD0200200/2017YFD0200203]
  2. National Natural Science Foundation of China [31501831, U1703232]
  3. China Postdoctoral Science Foundation [2015M581207]

Ask authors/readers for more resources

Interactions between bacteria and arbuscular mycorrhizal (AM) fungi play a significant role in mediating organic phosphorus (P) transformations and turnover in soil. The bacterial community in soil is largely responsible for mobilization of the soil organic P pool, and the released P is taken up by extraradical AM hyphae, which mediate its use for plant growth. However, the functional microbiome involved in organic P mineralization in the hyphosphere remains poorly understood. The aim of this study was to determine how AM hyphae-associated bacterial communities related to P turnover in the hyphosphere of leek (Allium porrum) respond to different forms of soil P. Using a compartmented microcosm, leek was grown with the AM fungus Funneliformis mosseae, and the extraradical mycelium of F. mosseae was allowed to grow into a separate hyphal compartment containing either no added P, or P as KH2PO4 or phytin. High-throughput sequencing showed that the alkaline phosphatase (ALP)-harboring bacterial community associated with the AM hyphae was dominated by Sinorhizobium, Bradyrhizobium, Pseudomonas, and Ralstonia and was significantly changed in response to different P treatments, with Pseudomonas showing higher relative abundance in organic P treatments than in control and inorganic P treatments. Pseudomonas was also the major genus harboring the beta-propeller phytase (BPP) gene in the hyphosphere, but the BPP-harboring community structure was not affected by the presence of different P forms. These results demonstrate the profound differences in ALP- and BPP-harboring bacterial communities in the hyphosphere at bacterial genus level, providing new insights to link bacteria and biogeochemical P cycling driven in association with mycorrhizal hyphae.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available