4.7 Article

Galaxy Zoo: unwinding the winding problem - observations of spiral bulge prominence and arm pitch angles suggest local spiral galaxies are winding

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 487, Issue 2, Pages 1808-1820

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stz1153

Keywords

galaxies: bulges; galaxies: spiral; galaxies: structure

Funding

  1. Leverhulme Trust
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. U.S. Department of Energy
  5. National Aeronautics and Space Administration
  6. Japanese Monbukagakusho
  7. Max Planck Society
  8. Higher Education Funding Council for England
  9. American Museum of Natural History
  10. Astrophysical Institute Potsdam
  11. University of Basel
  12. University of Cambridge
  13. Case Western Reserve University
  14. Drexel University
  15. University of Chicago
  16. Fermilab
  17. Institute for Advanced Study
  18. Japan Participation Group
  19. Johns Hopkins University
  20. Joint Institute for Nuclear Astrophysics
  21. Kavli Institute for Particle Astrophysics and Cosmology
  22. Korean Scientist Group
  23. Chinese Academy of Sciences (LAMOST)
  24. Los Alamos National Laboratory
  25. Max-Planck-Institute for Astronomy (MPIA)
  26. Max-Planck-Institute for Astrophysics (MPA)
  27. New Mexico State University
  28. Ohio State University
  29. University of Pittsburgh
  30. University of Portsmouth
  31. Princeton University
  32. United States Naval Observatory
  33. University of Washington
  34. Science and Technology Facilities Council (STFC) [ST/MJ0371X/1]
  35. Ogden Trust
  36. National Aeronautics and Space Administration (NASA) through Einstein Postdoctoral Fellowship [PF5-160143]
  37. NASA [NAS8-03060]
  38. STFC [ST/S000488/1] Funding Source: UKRI

Ask authors/readers for more resources

We use classifications provided by citizen scientists though Galaxy Zoo to investigate the correlation between bulge size and arm winding in spiral galaxies. Whilst the traditional spiral sequence is based on a combination of both measures, and is supposed to favour arm winding where disagreement exists, we demonstrate that, in modern usage, the spiral classifications Sa-Sd are predominantly based on bulge size, with no reference to spiral arms. Furthermore, in a volume limited sample of galaxies with both automated and visual measures of bulge prominence and spiral arm tightness, there is at best a weak correlation between the two. Galaxies with small bulges have a wide range of arm winding, while those with larger bulges favour tighter arms. This observation, interpreted as revealing a variable winding speed as a function of bulge size, may be providing evidence that the majority of spiral arms are not static density waves, but rather wind-up over time. This suggests the 'winding problem' could be solved by the constant reforming of spiral arms, rather than needing a static density wave. We further observe that galaxies exhibiting strong bars tend to have more loosely wound arms at a given bulge size than unbarred spirals. This observations suggests that the presence of a bar may slow the winding speed of spirals, and may also drive other processes (such as density waves) that generate spiral arms. It is remarkable that after over 170 years of observations of spiral arms in galaxies our understanding of them remains incomplete.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available