4.6 Article

[1,2,5]Thiadiazolo[3,4-d]Pyridazine as an Internal Acceptor in the D-A--A Organic Sensitizers for Dye-Sensitized Solar Cells

Journal

MOLECULES
Volume 24, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/molecules24081588

Keywords

sulfur-nitrogen heterocycles; [1,2,5]thiadiazolo[3,4-d]pyridazine; dye-sensitized solar cells; power conversion efficiency

Funding

  1. Russian Science Foundation [15-13-10022]
  2. Russian Science Foundation [18-13-17000] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

Four new D-A--A metal-free organic sensitizers for dye-sensitized solar cells (DSSCs), with [1,2,5]thiadiazolo[3,4-d]pyridazine as internal acceptor, thiophene unit as -spacer and cyanoacrylate as anchoring electron acceptor, have been synthesized. The donor moiety was introduced into [1,2,5]thiadiazolo[3,4-d]pyridazine by nucleophilic aromatic substitution and Suzuki cross-coupling reactions, allowing design of D-A--A sensitizers with the donor attached to the internal heterocyclic acceptor not only by the carbon atom, as it is in a majority of DSSCs, but by the nitrogen atom also. Although low values of power conversion efficiency (PCE) were found, a few important consequences were identified: (i) poor PCE data can be attributed to high electron deficiency of the internal [1,2,5]thiadiazolo[3,4-d]pyridazine acceptor due to lower light harvesting by the dye; (ii) the manner in which the donor was attached to the internal acceptor (by carbon or nitrogen) did not play an essential role in the photovoltaic properties of the dyes; (iii) dyes based on the novel donor 2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazolyl and 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H- carbazole moieties showed similar photovoltaic properties to dyes based on the well-known 4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indolyl building block, which opens the door for further optimization potential of new dye families.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available