4.3 Article

Photoluminescence-tunable fluorescent carbon dots-deposited silver nanoparticle for detection and killing of bacteria

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2018.12.070

Keywords

Fluorescent carbon dots; Silver nanoparticles; Catechol chemistry; Bacteria detection; Antibacterial activity

Funding

  1. Ministry of Trade, Industry and Energy (MOTIE) [10062079]
  2. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2017R1A2B2002365, 2018R1A6A1A03023788]

Ask authors/readers for more resources

Innovative methods to detect and kill pathogenic bacteria have a pivotal role in the eradication of infectious diseases and the prevention of the growth of antibiotic-resistant bacteria. The combination of fluorescent carbon dots (FCDs) with silver nanoparticles (AgNPs) is an effective material for synergic detection and antimicrobial activity determination. However, the fluorescence quenching of the FCDs owing to an interaction with AgNP is a major limitation. In this study, we designed a system to utilize poly(vinylpyrrolidone) (PVP) and catechol chemistry (PVP@Ag:FCD) in order to avoid the fluorescence quenching of the FCD-AgNP combination due to Forster Resonance Energy Transfer (FRET). PVP@Ag:FCD exhibited bright fluorescence, which can be used for bacterial detection, through the promotion of electrostatic binding with the negatively-charged bacterial surface and generation of fluorescence quenching due to aggregation-induced quenching. Furthermore, the presence of silver nanoparticles in PVP@Ag:FCD produced an excellent bacteria killing efficiency against E. coli and S. aureus, even at low concentrations (0.1 mg/mL). In contaminated river water, the PVP@Ag:FCD system showed a simple, highly sensitive, and effective performance for both the detection and eradication of bacteria. Therefore, this system offers an auspicious method for the future detection and killing of bacteria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available