4.1 Article

Selection of the oil-free bearing system for a 30 kW ORC microturbine

Journal

JOURNAL OF VIBROENGINEERING
Volume 21, Issue 2, Pages 318-330

Publisher

JVE INT LTD
DOI: 10.21595/jve.2018.19980

Keywords

oil-free bearing; microturbine; rotor dynamics; ORC system; designing

Funding

  1. National Centre for Research and Development from The Smart Growth Operational Programme (European funds) [POIR.01.01.01-00-0512/16]
  2. Marani Sp. z o.o. company

Ask authors/readers for more resources

The article discusses results of the analyses of various bearing systems for the rotor of an ORC (Organic Rankine Cycle) microturbine with an electric power of 30 kW. It is impossible to choose the appropriate bearing system taking into account only basic parameters of the bearings. When designing a new power turbine, it is important to conduct the dynamic and strength analysis of the entire rotor-bearings-supporting structure system. The nominal rotational speed of the newly designed single-stage axial-flow turbine is 40,000 rpm. The turbine will be powered using the vapour of a low-boiling working medium. The chosen working medium cannot be used in combination with all materials that are commonly used for turbine constructions. An additional requirement was that the turbogenerator must be oil-free. The temperature of the working medium directed to the rotor blades could exceed a value of 200 degrees C. Three bearing systems were considered: bearings lubricated with a low-boiling fluid (in the liquid form), gas bearings lubricated with the vapour of a low-boiling medium and rolling bearings. Since the rotors used in those three systems have different geometries, their dynamic properties vary as well. The rotor dynamics analyses were carried out using computer programs belonging to the MESWIR environment, which had been developed at the Institute of Fluid-Flow Machinery of the Polish Academy of Sciences (IMP PAN) in Gdansk. The computational model, based on the finite element method, was used to prepare graphs on which are presented vibration amplitudes as functions of the rotational speed. The computational model, based on the finite element method, served to perform calculations on the basis of which graphs presenting vibration amplitudes as functions of the rotational speed were prepared. Moreover, vibration trajectories of individual nodes of the computational model were shown. Besides analyses of the bearings themselves, calculations were also carried out to assess the dynamic properties of the rotors supported by those bearings in a wide range of rotational speeds. As a result of the conducted analyses, the concept of an innovative turbogenerator was created. Its rotor can operate at a very high rotational speed, and the bearings do not require oil lubrication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available