4.3 Article

Mitigation of salinity stress in wheat (Triticum aestivum L.) seedlings through physiological seed enhancements

Journal

JOURNAL OF PLANT NUTRITION
Volume 42, Issue 10, Pages 1192-1204

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/01904167.2019.1609509

Keywords

emergence; KCl; physiological traits; salt tolerance; seed priming

Categories

Ask authors/readers for more resources

Salinity stress can be mitigated by using the physiological seed enhancements. Kharchia 65 (salt tolerant) and PI.94341 (salt sensitive) genotypes were evaluated under salt stress (20 dS/m) by various priming treatments, that is hydropriming and halopriming (50mmol, KCl and NaCl) in a pot study. Experiment was conducted in completely randomized design under factorial arrangements with three replications. Priming agents improved the final emergence percentage (FEP), emergence index (EI) and reduced the mean emergence time of both wheat genotypes under normal and saline conditions as compared to non-primed seed. Priming treatments elicited the efficiency of wheat seedlings by increasing both Fv/Fm and Ft under both normal and salt stress conditions which were strongly linked with low Na+ and high K+. In conclusion, all three priming agents effectively nullified the deleterious effects of salt stress by improving seed emergence and triggering the physiological attributes of wheat.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available